Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents in HepG-2 Cell Line.
نویسندگان
چکیده
Cancer is a major public health concern worldwide. Adverse effects of cancer treatments still compromise patients' quality of life. To identify new potential anticancer agents, a series of novel pyrazoline derivatives were synthesized and evaluated for cytotoxic effects on HepG-2 (human liver hepatocellular carcinoma cell line) and primary hepatocytes. Compound structures were confirmed by ¹H-NMR, mass spectrometry, and infrared imaging. An in vitro assay demonstrated that several compounds exerted cytotoxicity in the micromolar range. Benzo[b]thiophen-2-yl-[5-(4-hydroxy-3,5-dimethoxy-phenyl)-3-(2-hydroxy-phenyl)-4,5-dihydo-pyrazol-1-yl]-methanone (b17) was the most effective anticancer agent against HepG-2 cells owing to its notable inhibitory effect on HepG-2 with an IC50 value of 3.57 µM when compared with cisplatin (IC50 = 8.45 µM) and low cytotoxicity against primary hepatocytes. Cell cycle analysis and apoptosis/necrosis evaluation using this compound revealed that b17 notably arrested HepG-2 cells in the G₂/M phase and induced HepG-2 cells apoptosis. Our findings indicate that compound b17 may be a promising anticancer drug candidate.
منابع مشابه
2-(4-Fluorophenyl)-N-phenylacetamide Derivatives as Anticancer Agents: Synthesis and In-vitro Cytotoxicity Evaluation
Cancer is a major global problem and is the second leading cause of mortality in the developed countries.Resistance to current chemotherapeutics and high incidence of adverse effects are the two principal reasons for developing new anticancer agents. Phenylacetamide derivatives can act as potential anticancer agents. Synthesis and screening of 2-(4-Fluorophenyl)-N-phenylacetamide derivatives in...
متن کامل2-(4-Fluorophenyl)-N-phenylacetamide Derivatives as Anticancer Agents: Synthesis and In-vitro Cytotoxicity Evaluation
Cancer is a major global problem and is the second leading cause of mortality in the developed countries.Resistance to current chemotherapeutics and high incidence of adverse effects are the two principal reasons for developing new anticancer agents. Phenylacetamide derivatives can act as potential anticancer agents. Synthesis and screening of 2-(4-Fluorophenyl)-N-phenylacetamide derivatives in...
متن کاملSynthesis and Cytotoxicity Evaluation of N-(5-(Substituted-benzylthio)-1,3,4-thiadiazole-2-yl)-2-p-nitrophenylacetamide Derivatives as Potential Anticancer Agents
Cancer is a big global problem and is one of the top and main causes of mortality in developed countries. Many of the current treatments and anticancer therapeutics have problems with severe side effects and on the other hand, the drug resistance is also another obstacle in the cancer chemotherapy. Hence, there is a strong demand for the discovery and development of effective new antineopla...
متن کاملA New Series of Cytotoxic Pyrazoline Derivatives as Potential Anticancer Agents that Induce Cell Cycle Arrest and Apoptosis.
A new series of pyrazoline derivatives 1b-12b was designed, synthesized and evaluated for antiproliferative activity against three cancer cell lines (HepG-2, Hela and A549). Additionally, NIH/3T3 cell cytotoxicity were tested and the structure activity relationships (SARs) were also determined. Among these new derivatives, the compounds 3-(4-fluorophenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihy...
متن کاملN-(5-Mercapto-1,3,4-Thiadiazol-2-yl)-2-Phenylacetamide Derivatives: Synthesis and In-vitro Cytotoxicity Evaluation as Potential Anticancer Agents
A new series of N-(5-Mercapto-1,3,4-thiadiazol-2-yl)-2-phenylacetamide derivatives (3a-3j) were synthesized via an amidation reaction using EDC and HOBt in acetonitrile solvent at room temperature condition. Chemical structures were characterized by 1H NMR, IR and MS spectroscopic methods and related melting points were also determined. The anticancer activity was evaluated using MTT procedure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2017